On the Khintchine constant
نویسندگان
چکیده
We present rapidly converging series for the Khintchine constant and for general “Khintchine means” of continued fractions. We show that each of these constants can be cast in terms of an efficient free-parameter series, each series involving values of the Riemann zeta function, rationals, and logarithms of rationals. We provide an alternative, polylogarithm series for the Khintchine constant and indicate means to accelerate such series. We discuss properties of some explicit continued fractions, constructing specific fractions that have limiting geometric mean equal to the Khintchine constant. We report numerical evaluations of such special numbers and of various Khintchine means. In particular, we used an optimized series and a collection of fast algorithms to evaluate the Khintchine constant to more than 7000 decimal places.
منابع مشابه
On The Khintchine Constant For Centred Continued Fraction Expansions∗
In this note, we consider a classical constant that arises in number theory, namely the Khintchine constant. This constant is closely related to the growth of partial quotients that appear in continued fraction expansions of reals. It equals the limit of the geometric mean of the partial quotient which is proved to be the same for almost all real numbers. We provide several expressions for this...
متن کاملOn Khintchine exponents and Lyapunov exponents of continued fractions
Assume that x ∈ [0, 1) admits its continued fraction expansion x = [a1(x), a2(x), · · · ]. The Khintchine exponent γ(x) of x is defined by γ(x) := lim n→∞ 1 n Pn j=1 log aj(x) when the limit exists. Khintchine spectrum dimEξ is fully studied, where Eξ := {x ∈ [0, 1) : γ(x) = ξ} (ξ ≥ 0) and dim denotes the Hausdorff dimension. In particular, we prove the remarkable fact that the Khintchine spect...
متن کاملLevý-Khintchine Inequalities, Multiple Reflection, and Brownian Motion
Let (" i) i1 be a sequence of independent Rademacher variables, and let (B t) t0 be a standard Brownian motion. Then the conjecture made in [5] that the best constant in the maximal Khintchine inequality:
متن کاملOn the Best Constants in Noncommutative Khintchine-type Inequalities
We obtain new proofs with improved constants of the Khintchine-type inequality with matrix coefficients in two cases. The first case is the Pisier and Lust-Piquard noncommutative Khintchine inequality for p = 1 , where we obtain the sharp lower bound of 1 √ 2 in the complex Gaussian case and for the sequence of functions {en}n=1 . The second case is Junge’s recent Khintchine-type inequality for...
متن کاملContinued Logarithms and Associated Continued Fractions
We investigate some of the connections between continued fractions and continued logarithms. We study the binary continued logarithms as introduced by Bill Gosper and explore two generalizations of the continued logarithm to base b. We show convergence for them using equivalent forms of their corresponding continued fractions. Through numerical experimentation we discover that, for one such for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997